
COS 702

Assignment 4

Daniel Lucas Thompson

March 25, 2016

Introduction:

In this assignment, we will be reconstructing a surface using a 3D point cloud. For the point

cloud, we will be using two common test model known as the Stanford bunny and the Stanford dragon.

These two point clouds were created by 3D scanning two ceramic figurines. From this scan, a 3D point

cloud of x, y, and z coordinates were created corresponding to points on the surface of the figurines.

For the problem in this assignment, we will be using two 3D point cloud sets for the bunny and one set

for the dragon. The bunny sets contain 8,171 and 1,889 data points. The dragon set contains 22,998

data points. The original ceramic figurine and point clouds can be seen below.

Surface Construction:

Along with the provided 3D point cloud data, the normal vectors for these data points are also

provided. These normal vectors will be used to create extra points to be used in the surface

reconstruction. The first step in this process is to remove any normal vectors with a zero value and their

corresponding points. Next, we use the remaining non zero normal vectors to create two extra points

for each original data point. We do this by moving a short step in the normal vector direction and

creating a new point. We do the same in the negative normal vector direction. We do this for all N

original points that didn't have zero normal vectors. This is accomplished with the following equations

where N is the number of original points, δ is the step size, and n is the normal vector.

(X N+i , Y N+i , Z N +i)=(X i+δni
x ,Y i+δni

y , Z i+δni
z
)

(X2 N+i ,Y 2N +i , Z2 N +i)=(X i−δni
x , Y i−δn i

y , Zi−δni
z
)

After creating these data points, there are a total of 3N data points. We can now use these points along

with our radial basis function to compute a set of weights that can be used to reconstruct a surface. First

we must set the known value for each of these points. We will do that by setting the original surface to

zero, the inner points to -1, and the outer points to 1 by the following.

(X i , Y i , Z i)=0, i=1, ... , N

(X i , Y i , Z i)=1, i =N +1, ... , 2 N

(X i , Y i , Z i)=−1, i= 2 N +1, ... , 3 N

Using these lists of points and point values, the weights can be calculated using the form Ax=b

where A is the distance matrix with the radial basis function applied for all the points, b are the value of

the points computed above, and x are the weights that we are solving for. For this assignment, we will

be using compact support radial basis functions (CS-RBF). The specific radial basis function (RBF)

that will be used are one of Wendland's CS-RBFs.

Compact support radial basis functions are a way of speeding up the computation time of data

reconstruction. When computing the distance matrix of points, only points within a certain radius are

computed. This radius is called the support. Many of the points that are far away are not computed,

thus they have a zero value. Considering only these neighboring points that fall within the support

radius and using them to create a sparse matrix containing many zeros, we are able to make use of

sparse matrix computations. The original compact support radial basis function is as follows.

CS−RBF=(1−r)+
6
∗(35 r2

+18 r+3)

For a Matlab implementation, it is better to write the function in a shifted form. The shifted form is as

follows.

CS−RBF (Shifted)=r+
6
∗(56∗spones(r)−88∗r+35∗r2

)

The purpose of the function spones(r) is to make use of the Matlab sparse matrix optimizations.

To reconstruct the surface, we must construct a new set of points to be used in making the

surface. These points will be created using a uniform mesh grid. Once these points are created, we can

combine them with the previously calculated weights to get the values for these points. Since these data

sets can be very large, we will need to partition the calculations in order to conserve memory. Once

these new points and values have been calculated, we can draw the surface by only drawing the points

of the value zero.

Results:

In trying to reconstruct the surface of this 3D point cloud, the quality of the reconstructed image

can be affected by many of the variables. One of the main variables that affect it is the number of mesh

grid points used to reconstruct the data. However, the compact support size, radial basis function, and

normal vector step size also have an effect. For this assignment, the quality of the surface

reconstruction will be determined visually.

To analyze the results, the images will be constructed using several different variations of the

parameters. For the value of ep the values 100, 150, 200, 250, 300, 350, and 400 will be used. The

value of ep effects the support size for the CS-RBFs. For the value of neval the values 50, 60, 70, 80,

90, 100, 110, and 120 will be used. The neval parameter effects the mesh grid size used for

reconstruction. The code provided will generate all the images for these sets of parameters, but due to

length, only a select few will be displayed in this results section.

In addition to the image surfaces, run times will also be displayed. For each surface

reconstruction, the calculations will be timed and displayed in seconds. These will be generated for the

same ep and neval values discussed previously.

The specifications of the computer used to run these results are as follows. The computer

contains a 4 core Intel Xeon processor running at 3.07 GHz. It has 12 GB of RAM. It is running the

operating system Kubuntu 14.04.

Bunny with 1,889 Points

The following results will display images and run times for the Stanford bunny 3D point cloud

that contains 1,889 points. In the following image, we show the result of varying the ep parameter

while keeping the neval parameter set at 100. The value of 100 was chosen because it generally gives a

good image, and using it will demonstrate the effects of the ep value. As can be seen in the following

image, as the support size grows smaller, the bunny surface becomes poor. As ep increases, the support

size decreases which means less points are used in the calculations. Since this figure only has 1,889

points, as the support size decreases, the amount of information available for calculations is reduced

resulting in a poorer surface.

In the next image, the effect of the value of neval is demonstrated. In the previous image, we

can see that the best ep value was 100, so we will demonstrate the effect of neval using that parameter.

As can be seen in the following image, the surface is recognizable at neval of 50, but as it is increased,

the surface slowly improves.

In the next image, we have the best bunny generated. It used an ep value of 100 and a neval

value of 120. The image has a small defect on the ear, but recreated the surface in the other areas.

The following table shows the run times for all ep and neval parameters in seconds. The best image

run time is underlined.

neval

ep 50 60 70 80 90 100 110 120

100 5.7 9.0 15.2 20.3 28.5 38.7 51.3 73.7

150 4.8 7.9 12.1 17.8 25.3 34.8 46.0 59.5

200 4.6 7.5 11.5 18.9 24.0 36.4 43.5 56.1

250 4.8 7.3 11.3 16.6 23.5 35.5 42.2 60.8

300 4.4 7.3 11.1 16.3 23.0 31.4 46.5 53.9

350 4.3 7.1 11.0 16.3 25.3 32.9 44.6 53.8

400 4.3 7.8 10.9 17.8 25.0 32.5 42.8 57.6

Bunny with 8,171 points

The following results will display images and run times for the Stanford bunny 3D point cloud

that contains 8,171 points. In the following image, we show the result of varying the ep parameter

while keeping the neval parameter set at 100 as in the previous results. As can be seen in the following

image, the support size starts with ep of 100 which has some defects around the ear area. As ep

increases, the image slowly improves. However, once the ep parameter reaches the value of 250, the

image quality begins to become poor.

As in the previous results, we now demonstrate the values of neval. The best ep value seems to

be 200, so that value will be used to demonstrate. As can be seen from the following image, at neval of

50, the image has the rabbit shape, but it is poorly defined. As neval is increased, the image slowly

improves until there isn't much difference between the images.

In the next image, we have the best bunny generated. It used an ep value of 200 and a neval

value of 120. The image is a good result, with no defects.

The following table shows the run times for all ep and neval parameters in seconds. The best image

run time is underlined.

neval

ep 50 60 70 80 90 100 110 120

100 17.3 20.9 29.3 41.8 55.3 74.4 85.7 112.9

150 12.3 16.2 21.4 29.2 38.5 51.3 64.7 82.1

200 10.9 15.0 19.1 26.0 35.2 44.9 56.9 71.4

250 11.4 14.0 19.9 24.8 33.4 47.4 54.6 68.9

300 10.3 13.8 17.9 24.5 36.4 42.2 53.5 67.0

350 10.0 13.5 17.5 24.1 32.4 41.8 52.6 65.6

400 9.9 13.3 17.3 23.8 31.8 40.8 57.2 65.0

Dragon with 22,998 points

The following results will display images and run times for the Stanford dragon 3D point cloud

that contains 22,998 points. In the following image, we show the result of varying the ep parameter

while keeping the neval parameter set at 100 as in the previous results. As can be seen in the following

image, the support size starts with ep of 100 which has defects around the entire surface. As ep grows,

the image improves.

As in the previous results, we now demonstrate the values of neval. The best ep value seems to

be 300, so that value will be used to demonstrate. As can be seen from the following image, at neval of

50, the image shows the details poorly. As neval is increased, the image slowly improves until there

isn't much difference between the images.

In the next image, we have the best dragon generated. It used an ep value of 300 and a neval

value of 120.

The following table shows the run times for all ep and neval parameters in seconds. The best image

run time is underlined.

neval

ep 50 60 70 80 90 100 110 120

100 78.3 91.7 103.7 138.1 160.8 195.4 229.8 267.9

150 61.5 65.1 71.9 89.6 109.8 130.3 152.1 178.7

200 51.0 64.5 63.5 80.2 99.0 113.2 146.0 152.6

250 52.1 55.0 60.9 75.3 92.4 107.0 123.9 158.0

300 50.8 53.7 58.1 73.2 90.3 105.2 120.0 139.0

350 45.3 53.0 57.2 75.1 88.9 103.2 119.3 151.0

400 45.0 52.6 58.5 71.7 91.5 120.8 117.4 137.7

Conclusion

As can be seen from the data in the previous sections, it takes much testing to narrow down the

correct parameters that will produce the best surface from a 3D point cloud. There are several

parameters that can effect it. As we can see from the measured run times, it can also be time consuming

to test these parameters. For this assignment, the program was run for several hours to produce images

for many combinations of parameters. However, there was a limit to the number of parameters that

could be tested. The best images produced in this report are good images, but with more time to adjust

and run the parameters, slight improvements could possibly be made. However, it is possible for some

of the images, the improvements would be so minor that they would be hard to notice.

