
University of Southern Mississippi

COS 703 Final Project

Comparison of Deep
Reinforcement Q-Learning
Algorithms in Partially

Observable Environments

Daniel Lucas Thompson

May 8, 2017



1 Introduction

In this project, two different reinforcement learning algorithms will be com-
pared on similar test bench problems. The Deep Q-Learning (DQN) al-
gorithm [1] will be compared to the Deep Recurrent Q-Learning (DRQN)
algorithm [2]. The problem comparison will be done using the Open AI Gym
module [3]. The problem being tested will be two variations of the Cart
Pole problem. One will be fully observable, and the other will be partially
observable.

In the DQN and DRQN papers, the algorithms were used to learn to
play Atari games by using the images as input with convolutional neural
networks. This project consists of two main goals. The first being to modify
the original algorithms to use individual feature values rather than images.
The second goal of this project is to compare whether DRQN can learn to
a level comparable to DQN when some information is removed from the
problems making the problem partially observable.

In the reinforcement learning problem that will be used, several rounds
of testing will be done on regular and modified versions of the problem.
Both DQN and DRQN algorithms will be tested on the standard problems.
Next, the problems will be modified to remove some information, making the
problem partially observable, and the DQN and DRQN algorithms will be
tested again. Under the partially observable problem, the DRQN algorithm
should be able to infer the information that has been obscured while the
DQN algorithm should perform poorly.

2 Tools Used

This project will make use of several libraries. The programming language
used for the project will be Python. Several main python modules will be
used, including the following. The OpenAI gym module will be used to
handle the test bench problems. The Keras module will be used to handle
the deep learning neural network code. Data analysis will be done using
Jupyter Notebooks using IPython with Pandas and Matplotlib.

1



3 Reinforcement Learning

Reinforcement learning is a type of machine learning problem. The main
idea of reinforcement learning is to allow an algorithm to interact in an
environment and get immediate feedback on its decisions. These algorithms
are sometimes referred to as agents or learners. These agents interact in
an environment by performing actions, and performing these actions in the
environment returns an observation and a reward value. In reinforcement
learning, these observations and rewards represent the data set. Meaning,
there is no data at the start of the learning. The data comes in a piece at
a time as the agent is interacting with the environment. This type of data
stream is generally referred to as online learning.

The data in reinforcement learning are the observations and reward value.
The observation is the agents perception of the hidden state of the environ-
ment, and the reward value is produced by a programmer designed function
to guide the agent in its choices. For every action the agent performs in the
environment, it receives an observation and reward value. The agent uses
these observations and reward values in its algorithm to calculate the best
action to perform in the environment.

4 Q-Learning

The two algorithms discussed in this paper will make use of a common rein-
forcement learning algorithm called Q-Learning. Q-Learning can be used to
find the optimal action policy for a Markov Decision Process. In Q-Learning,
an agent learns to map state action pairs to Q-Values. A Q-Value represents
the scores of performing an action in a given state and then following the
optimal Q-Learning policy for future actions. The Q function is defined as
follows.

Q(s, a) = Q(s, a) + α(r + λmaxa′Q(s′, a′))

Where α is a learning rate, r is the reward for performing the current
action a in the current state s, and λ is the future discount factor. The
equation maxa′Q(s′, a′) selects the best action a′ to perform in state s′

where s′ is the state you transition to after performing action a in state s.
This is known as the Bellman equation, where Q(s, a) is calculated as the

2



current reward for performing an action in the current state plus the future
rewards for performing actions in future states.

The Q-Learning algorithm initially starts with inaccurate values. As the
agent receives more data samples, it uses these samples to improve its es-
timate of the Q-Values. When the agent is executing actions in the envi-
ronment, it can select the best current action to perform by inputting the
current state with all available actions and selecting the maximum value.

5 Deep Q-Learning

The Deep Q-Learning (DQN) algorithm approximates the Q-Learning method
using a deep neural network. In the original DQN paper [1], a mixture of
feed forward and convolutional layers were used to learn to play Atari games.
In this project, the network structure is made up of an input layer with an
input for each observation, multiple hidden feed forward layers, and an out-
put layer with an output for each action. Since this does not use images,
no convulutional layers are needed, so they are replaced with feed forward
layers. To use the network, an observation is input, and all Q-Values for each
action is output. To choose the action to perform, you select the maximum
Q-Value.

In the original Deep Q-Learning paper [1], the authors makes use of sev-
eral advanced techniques to train their network. In this project, the scale of
data is much smaller, so all the techniques aren’t needed. In this project, the
techniques used include experience replay, target networks, and ε−greedy
exploration.

Experience replay is a technique of saving past experiences from a rein-
forcement learning training episode. During the learning process, transaction
tuples of the form (s, a, r, s′) are saved in a list referred to as replay memory.
These experiences are then used when training the network by selecting ran-
dom batches from the replay memory which allows the network to be trained
in a similar fashion to supervised learning rather than having to train as each
single online data sample comes in.

Target networks are another technique used that helps make the train-
ing similar to supervised learning. Without target networks, the network is
training to approximate the function Q(s, a), but the target values that the
network is attempting to train to, which include the function Q(s′, a′), are
also produced by this network. In order to make the training more stable, a

3



separate copy of the network is made at certain intervals. Only updating this
network occasionally helps the network training because the target values are
fixed for several training iterations.

The final technique is an exploration-exploitation technique called ε−greedy
exploration. In the Q-Learning algorithm, the maximum action is selected
for the agent to perform. In the early stages of training, the Q-Values are
very poorly estimated, so choosing the maximum value may not be the best
choice. Using this exploration technique, the agent chooses a random action
with a probability ε. Otherwise, it uses the maximum Q-Value action. This
allows the agent to keep exploring to find better solutions as the Q-Values
are converging.

Algorithm 1 Deep Q-Learning

1: Initialize the Replay Memory D
2: Initialize the Q network with random weights
3: s← the initial problem state
4: repeat
5: a← random with probability ε, or argmaxaQ(s, a)
6: s′ ← perform action a in the environment to get s′
7: r ← reward from performing a in s
8: D ← append (s, a, r, s′)
9: B ← sample a batch from replay memory D

10: for each transaction in batch B do
11: if s is the terminal state then
12: target← r
13: else
14: target← r + λmaxa′Q(s′, a′)
15: end if
16: end for
17: Train the network using (targets−Q(s, a))2 as loss
18: s← s′
19: until average reward reached

The Deep Q-Learning (DQN) algorithm is performed in an on-line train-
ing fashion. Meaning, the agent is receiving observations from the environ-
ment and performing actions in the environment while training is taking
place. It is performed in a sequential fashion. The agent receives a starting
state and performs its initial action. The environment then returns a reward

4



and the next observation. This agent-environment interaction continues until
the agent solves the problem or a pre-determined time limit is reached. This
is referred to as an episode. The reward at each step is summed to give a
total reward for the episode. The agent is trained until an average reward
value over several episodes has been reached.

The above Algorithm 1 explains this in more detail. In lines 1 and 2
initialize the replay memory to empty and give the neural network a random
initialization. In line 3, the initial starting state, also referred to as an ob-
servation, is received from the environment and it is assigned to our starting
state s. In line 4, we enter a loop that is repeated for the entire training
process. In lines 5 through 9, we build and sample the replay memory. The
values for a, s′, and r are received from interacting with the environment.
In lines 10 through 16, we iterate over each individual sample in the batch
and compute its target value. If it is a terminal sample, meaning this sample
was the final transaction before winning or losing an episode, it gets just
the current reward value. If it is not a terminal sample, it gets the current
reward value plus the future discounted reward value. In line 17, the neural
network is trained using the small batch of samples that were calculated in
the previous lines. This training continues in an on-line fashion until the
agent is able to achieve a pre-determined average reward across a number of
episodes.

6 Deep Recurrent Q-Learning

Deep Recurrent Q-Learning (DRQN) makes use of the previous DQN al-
gorithm with two minor changes. The first change is to replace the last
feed forward layer in the network with a recurrent Long Short Term Mem-
ory (LSTM) layer. The second change is a side effect of the LSTM layer
which requires a change to the replay memory in order to store transaction
sequences. The DRQN algorithm is identical to the DQN algorithm in all
other aspects.

A LSTM layer has a different architecture from a normal feed forward
network. In the LSTM layer, there are multiple sets of weights that govern
an internal cell state. These weights are referred to as gates, and there are
three kinds. The forget gate allows the LSTM cell to forget or erase a part
of the cell state. The next gate, referred to as an input gate, decides which
values of the cell state will be updated. The output gate determines the

5



extent to which the internal state is used in the final output. This allows the
layer to keep an internal state that represents past values that let it better
predict future values.

To train the LSTM layer, the data must be in a sequential series format.
Meaning, that the training samples must come from consecutive steps in an
episode. Because of this, the replay memory must be modified. The replay
memory is changed to keep a sequence of tuples of the form (s0, a0, r0, s

′
0),

(s1, a1, r1, s
′
1), ... ,(sn, an, rn, s

′
n) where n is the length of the episode. When

training, a batch of episodes are sampled. From these episodes, a small
sub-segment of these sequential tuples are sampled. The length of this sub-
segment is referred to as the trace length and they are sampled starting from
a random point in the episode. The network is then trained on the batches
of these sequences. With these changes made, the algorithm is trained in the
same way as Algorithm 1 in the previous section.

Adding this LSTM layer allows the network to keep an internal memory
associated with the past observations that were passed through the network.
This LSTM layer should be able to infer obscured information from the test
problems, as long as the hidden and visible values of the problem have some
corelation.

7 Test Bench Problems

This section will describe and detail the test bench problems that will be used
in this report. The Cart Pole problem will be used to make comparisons, but
two versions of the problem will be used. The first test will consist of the fully
observable problem that provides all the observations to the algorithm. The
second problem will be a partially observable implementation where some of
the observations are withheld from the algorithm.

In the partially observable problems, the data that is removed must still
have some correlation to the data that remains. The data that will be re-
moved from the problems will be the velocity values. The data that remains
in the problem will be the position values. Given positions at consecutive
time steps, velocity values can be inferred.

The theory behind this selection is the comparison between the DQN and
DRQN algorithms. In the partially observable problem, the DQN algorithm
has no memory state, so it should do a poor job with the problem. However,
the DRQN algorithm should be able to use its LSTM layer to ”remember”

6



positions and infer the velocity to perform much better than the DQN algo-
rithm.

7.1 Cart Pole

In the Cart Pole problem, a pole is attached to a small cart. The goal of
the problem is to balance the pole by issuing actions to the cart to move
left or right. The fully observable test will use four observations to make a
decision on which action to choose. Those observations are the cart position,
cart velocity, pole angle, and pole velocity at the tip of the pole. The partial
observable test will only use two observations. Those observations are cart
position and pole angle to make a decision on which action to choose.

Figure 1: An Illustration of the Cart Pole Problem

8 Results

The results section is broken up into two main sections. In the first section,
the results for the DQN algorithm will be shown for the fully observable and
partially observable problems. In the second section, the results for DRQN
will be shown for the fully observable and partially observable problems.

For each algorithm and problem type, a total of 10 training runs were
used. After training is completed, a testing run of 100 episodes for each

7



model is used to evaluate the performance. In the graphs, there are three
plots. The green line shows the goal reward that is needed to consider the
problem solved. The blue line shows the final reward for each individual
episode. The red line shows the average reward over the last 100 episodes.
For the training, once the average reward reaches the goal reward, training
is stopped and testing is done. If the average reward never reaches the goal
reward, training is stopped at 5000 episodes, and testing is done. In the
testing graphs, the green line is shown for comparison. The testing does not
stop if the reward is greater.

8.1 DQN Algorithm

In this section, the results for Deep Q-Learning algorithm will be displayed.

8.1.1 DQN Fully Observable

In figure 2, the results for the fully observable unmodified Cart Pole problem
are shown for the DQN algorithm. In all ten training runs, the average
reward made it to the goal reward. For the test results in figure 3, the agent
was able to score the maximum value of 1000 on 9 out of the 10 runs, and
obtained a value above the goal of 400 on the remaining.

8



Figure 2: Results for DQN on Fully Observable Cart Pole

9



Figure 3: Test Runs for DQN Fully Observable Cart Pole

Average Test Scores

Run 1 Run 2 Run 3 Run 4 Run 5
1000.0 1000.0 1000.0 1000.0 1000.0

Run 6 Run 7 Run 8 Run 9 Run 10
551.9 1000.0 1000.0 1000.0 1000.0

8.1.2 DQN Partially Observable

In figure 4, the results for the partially observable modified Cart Pole problem
are shown for the DQN algorithm. All ten training runs fail to achieve the
goal average. In the testing episodes of figure 5, all ten runs fail to achieve
the goal average.

10



Figure 4: Results for DQN on Partially Observable Cart Pole

11



Figure 5: Test Runs for DQN Partially Observable Cart Pole

Average Test Scores

Run 1 Run 2 Run 3 Run 4 Run 5
44.8 42.3 43.3 36.8 9.5

Run 6 Run 7 Run 8 Run 9 Run 10
42.1 40.6 41.7 29.6 43.0

8.2 DQRN Algorithm

In this section, results for the Deep Recurrent Q-Learning algorithm will be
displayed.

12



8.2.1 DRQN Fully Observable

In figure 6, the results for the fully observable unmodified Cart Pole problem
are shown for the DRQN algorithm. In all ten training runs, the average
reward made it to the goal reward. For the test results in figure 7, the agent
was able to score the maximum value of 1000 on 4 out of the 10 results.
However, some of the remaining were very close to the maximum. For the
other 6 out of 10 results, the average agent score was well above the goal of
400.

Figure 6: Results for DRQN on Fully Observable Cart Pole

13



Figure 7: Test Runs for DRQN Fully Observable Cart Pole

Average Test Scores

Run 1 Run 2 Run 3 Run 4 Run 5
1000.0 758.2 1000.0 983.5 1000.0

Run 6 Run 7 Run 8 Run 9 Run 10
985.1 999.7 1000.0 761.1 697.3

8.2.2 DRQN Partially Observable

In figure 8, the results for the partially observable modified Cart Pole problem
are shown for the DRQN algorithm. In all ten training runs, the average
reward made it to the goal reward. For the test results in figure 9, the agent
was able to score above the average goal value on 6 out of 10 of the results.

14



Figure 8: Results for DRQN on Partially Observable Cart Pole

15



Figure 9: Test Runs for DRQN Partially Observable Cart Pole

Average Test Scores

Run 1 Run 2 Run 3 Run 4 Run 5
767.1 317.1 217.0 402.1 990.8

Run 6 Run 7 Run 8 Run 9 Run 10
622.7 525.4 183.7 518.1 227.8

9 Analysis

In this section, the results are analyzed. One of the main goals of this project
was to show the the DRQN algorithm could solve a partially observable
problem where the DQN algorithm would fail. In this section, that result
will be shown.

16



In this section, the best run of each algorithm will be used for comparison.
The best run consists of the run with the highest test average with ties broken
randomly. The training and test values will be used for comparison purposes.

In figure 10, the training values for the best runs are shown. For the fully
observable Cart Pole problem, both algorithms achieved the goal. From
figure 11, both algorithms achieved the maximum test value for the problem.

For the partially observable problem, the difference is greater. In the DQN
version in figure 10, the algorithms was never able to reach the training goal.
Also, the best testing value was a small value of 44.8. To summarize the
data, the DQN algorithm completely fails on the partially observable Cart
Pole problem. Referring back to figure 5, it can be seen that the algorithm
failed on all 10 out of 10 runs. However, the DRQN algorithm reached the
training goal and had a maximum test value of 990.8. As can be seen from
the DRQN partially observable test runs in figure 9, the DRQN algorithms
tested successfully in 6 out of 10 runs.

Figure 10: Analysis Training Comparison

17



Figure 11: Analysis Testing Comparison

Maximum Average Test Scores

DQN Full DQN Partial
1000.0 44.8

DRQN Full DRQN Partial
1000.0 990.8

In summary, it was shown that the DQN algorithm is unable to suc-
cessfully solve the given partially observable problem. However, the DRQN
algorithm was able to solve the partially observable problem on 6 out of the
10 runs. For the remainging 4 out of 10 runs, the value was below the goal,
but still well above the DQN values. This shows that given a partially ob-
servable environment, the DRQN algorithm would be a better choice over
the DQN algorithm.

18



10 Conclusion and Future Work

In this project, the main goal was to show that a recurrent LSTM network
can aid in Deep Q-Learning depending on how the problem you are trying to
solve is constructed. The DRQN algorithm successfully solved the partially
observable problems where the DQN algorithm failed.

This was easy to test using the OpenAI Gym test bench problems. How-
ever, it can be more difficult in other problems where the observations aren’t
as clearly defined. When desiging other problems, choosing the correct obser-
vation features might not always be an easy task. Using the DRQN algorithm
could help with this problem by reducing the number of observation features
that need to be used.

Two areas of future work are planned for the use of this project. The
first being drone target tracking in the Robotics Operating System with the
Gazebo Simulator which is currently under development. The second part
is the incorporation of images and convolutional neural networks like the
original papers used. This second part requires more computation power, so
it will be delayed until appropriate hardware is available.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[2] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for
partially observable mdps. CoRR, abs/1507.06527, 2015.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR,
abs/1606.01540, 2016.

19


