
Detection of Plan Deviation in Multi-Agent Systems

Bikramjit Banerjee
School of Computing

University of Southern Mississippi
Hattiesburg, MS 39402

tBikramjit.Banerjee@usm.edu

Steven Loscalzo
AFRL Information Directorate

26 Electronic Parkway
Rome, NY 13441

Steven.Loscalzo@us.af.mil

Daniel Lucas Thompson
School of Computing

University of Southern Mississippi
Hattiesburg, MS 39402

Daniel.L.Thompson@eagles.usm.edu

Abstract

Plan monitoring in a collaborative multi-agent system
requires an agent to not only monitor the execution
of its own plan, but also to detect possible deviations
or failures in the plan execution of its teammates. In
domains featuring partial observability and uncertainty
in the agents’ sensing and actuation, especially where
communication among agents is sparse (as a part of a
cost-minimized plan), plan monitoring can be a signifi-
cant challenge. We design an Expectation Maximization
(EM) based algorithm for detection of plan deviation of
teammates in such a multi-agent system. However, a di-
rect implementation of this algorithm is intractable, so
we also design an alternative approach grounded on the
agents’ plans, for tractability. We establish its equiva-
lence to the intractable version, and evaluate these tech-
niques in some challenging tasks.

Introduction

The problem of computing multi-agent plans, when the do-
main features partial observability and uncertainty in the
agents’ sensing and actuation, is computationally very chal-
lenging. This problem of planning in multi-agent systems
has received significant attention in the past. However, the
related problem of multi-agent plan monitoring has hardly
garnered similar attention during the same time. Plan mon-
itoring allows an agent to monitor the execution of its own
plan, and detect possible failures or deviations that might
entail the need to repair its plan, or replan. By contrast,
a multi-agent system is particularly fragile to plan devia-
tions, because one agent’s deviation may affect other agents,
and the debilitating effects may snowball quickly leading
to catastrophic failures. Therefore in a collaborative multi-
agent setting, an agent needs to detect any deviation or fail-
ure on part of its teammates. This activity is an important
part of multi-agent plan monitoring. In a partially observ-
able setting where agents cannot directly observe the actions
of its teammates, it may be challenging for an agent to per-
form such monitoring. It must rely on its local observations
and information to deduce the probability of deviation of its
teammates from their part of the joint plans.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The problem of diagnosing multi-agent plan execution
has been approached from various perspectives. Nearly two
decades ago, Tennenholtz (1997) formulated the concept of
stable joint plans, and proceeded to explore the computabil-
ity and computational procedures for such plans. This was a
mechanism design perspective of the planning problem with
an additional constraint that plans must be such that any de-
viation by one agent is detectable by the other agents. This
interesting initiative at the intersection of multi-agent plan-
ning and plan monitoring does not appear to have been pur-
sued further in either literature. Later, Kalech and Kaminka
(2003) introduced the idea of social diagnosis, using an ab-
stract representation for multi-agent plans based on behav-
iors, to explain why agents selected conflicting behaviors.
This approach adds communication among agents as a diag-
nostic tool, in addition to those required by the agents’ plans.
In view of the significant added communication complexity,
Kalech and Kaminka also extended their approach for scal-
ability (Kalech and Kaminka 2005). In contrast with social
diagnosis, many authors have used more explicit representa-
tion of multi-agent plans in terms of agents’ actions and re-
sources. For instance, de Jonge, Roos and Witteveen (2009)
introduced the notion of plan diagnosis—a subset of actions
which when assumed to be executed anomalously make the
plan execution consistent with the protagonist’s observation.
When the same observation sequence may be consistent with
multiple plan diagnoses, the authors identify preferred diag-
noses based on their predictive power. The diagnostic infer-
ence procedure is, however, largely centralized.

Through a series of papers, Micalizio and Torasso (2008;
2009; 2014), developed a relational framework with ex-
plicit representation of multi-agent plans and extended ac-
tion models to include both nominal and faulty evolutions.
A distinct advantage of this framework is that it is fully dis-
tributed and does not rely on synchronized action executions
by the agents. However, it does impose cooperative commu-
nications among agents to share beliefs and mutually facili-
tate the diagnostic process. Similar to de Jonge, Roos and
Witteveen (2009), Micalizio and Torasso also distinguish
primary failures (original failures) from secondary failures
(caused by primary failures), with an eye toward plan repair
which typically targets primary failures.

In this paper, we derive a procedure for the detection
of deviation in a teammate’s plan in partially observable

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2445

multi-agent systems, from first principles via expectation
maximization. However, a direct implementation of this ap-
proach would be intractable, so we design an alternative (and
tractable) implementation that is grounded on the agents’
plans, called controller based EM (CBEM). Experimental
evaluation in two domains—one existing and another new—
not only establishes the relative tractability of CBEM, but
also the validity of its inferences.

Our work is distinct from the existing literature in several
ways. Firstly, we use explicit representation of multi-agent
plans that is popular in the multi-agent planning commu-
nity, rather than an abstract or explicit representation that is
dictated by the needs of plan diagnosis. In other words, we
wish to apply diagnosis to the execution of plans generated
by off-the-shelf planners. Consequently, a second distinction
is that we do not assume additional communication or col-
laboration among agents to facilitate diagnosis. Thirdly, we
do not assume the availability of explicit and extended ac-
tion models that may be tedious to encode. Fourthly, our
approach is fully decentralized, allowing each agent to in-
dependently draw inferences about other agents’ deviations.
On the downside, we assume that agents’ actions are indeed
synchronous, although not necessarily simultaneous, or even
of equal duration. We also treat diagnosis as an end rather
than a means for (eventual) plan repair, and consequently,
we do not distinguish primary failures from secondary ones.

Multi-agent Plans

We first describe the multi-agent planning domain—the sub-
strate for computing and executing plans for a multi-agent
team. Then we shall describe the plan representation of the
agents. Together, they will serve as the basis for the mecha-
nism of detection of plan deviation.

Multi-agent Planning

We consider the traditional multi-agent planning domain—
featuring uncertainty and partial observability—given by a
tuple 〈n, S,A, P,R,Ω, O, β0〉 where

• n is the number of agents.

• S is a finite set of environment states that are not directly
observable.

• A = ×iAi is the (product) set of joint actions, where Ai

is the set of individual actions that agent i can execute.

• P (s′|s,a) gives the probability of transition to state s′ ∈
S when joint action a ∈ A is executed in state s ∈ S.

• R : S × A × S → R, where R(s,a, s′) gives the im-
mediate reward the agents receive upon executing action
a ∈ A in state s ∈ S, and transitioning to state s′ ∈ S.

• Ω = ×iΩi is the (product) set of joint observations, where
Ωi is the finite set of individual observations that agent i
can receive from the environment.

• O(ω|s′,a) gives the probability of the agents jointly ob-
serving ω ∈ Ω if the current state is s′ ∈ S and the previ-
ous joint action was a ∈ A.

• β0 is the initial state belief.

�

� � �

� � �

� ��

�������

������	

������

��������	

�
�
�

�
�
�

�
�
�

��

� �

� �

� �

Figure 1: A layered controller/policy. “a” represents action,
while “ω” represents observation.

The reward function R, transition model P , and observa-
tion model O are defined over joint actions and/or observa-
tions, which forces the agents to coordinate. A problem hori-
zon, notated as T , is often specified in a planning problem to
indicate the number of interactions that the agents are going
to have in the shared environment. The goal of planning is
to find a policy for each agent (i.e., a joint policy) that max-
imizes the total expected reward over T steps, given that the
agents cannot communicate their observations and actions to
each other. Note that if communication is possible but comes
at a cost, then the communicative actions can be included in
A and their costs can be included in the R function to make
communication a part of the optimization problem.

We assume that the planning problem has been solved and
the agent policies computed. We also assume that agents are
not only given their own policies for execution, but also the
policies of their teammates to enable deviation detection.

Plan/Policy/Controller Representation

We consider multi-agent policies that map the observation
history of an agent to its (next) action. Thus the policy of
agent i is πi : Oi �→ Ai. For finite horizon problems with
horizon T , the policy may map any observation history of
any length t < T , oti ∈ Oi. In practice, however, an agent’s
policy may be represented as a deterministic finite state con-
troller (FSC) in problems with large, indefinite, or infinite
horizon. In such cases, each observation history uniquely
maps to a controller (FSC) state/node which is associated
with an action. Therefore, FSC policies also map observa-
tion histories to actions, and our definition of πi applies to
such policies as well. We do not consider stochastic FSCs
in this paper as they themselves typically require optimiza-
tion over stochastic transitions, while deterministic FSCs are
often much simpler to hand-code for a given task.

In this paper, we further limit focus to a class of deter-
ministic FSCs, called layered controllers. In such a con-
troller, states/nodes are organized in a set of L layers or
levels, with a fixed number of nodes per layer. The node
transition function (based on an agent’s observations) is con-
strained to only map nodes in layer � to nodes in layer �+1,

2446

� = 0, . . . , L − 2. Figure 1 shows an example of a lay-
ered FSC. Such controllers are quite common in the multi-
agent planning literature (Seuken and Zilberstein 2007;
Pajarinen and Peltonen 2011). We assume that the problem
horizon T does not exceed L.

Detection of Deviation

We first establish some notations and conventions used in
this paper. Let θti represent the action-observation history of
length t of agent i, i.e., θti = 〈a0i , ω1

i , a
1
i , ω

2
i , . . . , a

t−1
i , ωt

i〉.
Let oti represent the observation (only) history of length t,
i.e., oti = 〈ω1

i , ω
2
i , . . . , ω

t
i〉. Also let φ : Θ �→ O be a func-

tion that extracts the observation-only history from θti ∈ Θi

and return oti ∈ Oi for any agent i.
For notational convenience, we consider two-agent sys-

tems, agent i and agent j. Agent i is the protagonist, who
wishes to compute the probability of plan deviation by other
agents (but itself doesn’t deviate from its plan). All other
agents in the system are bundled together into a single (vir-
tual) agent j. Then agent i’s problem is to infer what history
θTj may have been observed by agent j, given that it has
observed θTi itself, after T steps of plan execution by both
agents.

This problem can be posed as a filtering problem, i.e., the
problem of (hidden) state estimation where 〈st, atj , ωt

j〉 is
considered the hidden state, and 〈ati, ωt

i〉 is the observation
at step t. The forward backward algorithm (Rabiner 1989) is
a common approach; however this algorithm gives state es-
timations that are temporally optimized at individual steps,
rather than optimized together. We are interested in estimat-
ing θTj where atj and at

′
j (t, t′ < T) are correlated. Conse-

quently, the more appropriate approach for this problem is
sequence estimation, which returns an optimized sequence
of hidden states, given the observation sequence.

A popular algorithm for sequence estimation is the
Viterbi algorithm (Viterbi 1967). This algorithm assumes the
knowledge of a transition model guiding the evolution of the
hidden state. While such models are available for st and ωt

j ,
the only model that agent i has about atj is the policy πt

j
(which is known to agent i). However, our precise interest is
in the scenario where agent j may deviate from πt

j . To solve
this problem, we introduce an additional parameter δt, which
represents the probability that agent j will execute the action
dictated by its policy πj at step t. We further assume that the
probability mass of (1−δt), corresponding to deviation from
πj , is uniformly distributed over all actions that violate πj at
step t, i.e., probability 1−δt

|Aj |−1 for each such action.

There is yet another roadblock to exploiting the exist-
ing approaches for sequence estimation, however. Since we
know nothing about δt, we would like to assume some rea-
sonable prior, and be able to compute the posterior. Se-
quence estimation would output an optimized sequence of
〈st, atj , ωt

j〉, but would not give a straightforward way to up-
date δt. Consequently, we turn to Expectation Maximization
for that purpose, as described later in the next section.

Our Approach

The likelihood of joint action-observation history θt =
〈θti , θtj〉, with the system state being st at step t of policy
execution, is given by the recurrence relation

Pr(st,θt) =
∑

st−1∈S

Pr(st−1,θt−1)P (st,ωt|st−1,at−1)·

Pr(at−1|θt−1) (1)

where P (st,ωt|st−1,at−1) is the shorthand notation for
the product P (st|st−1,at−1) · O(ωt|st,at−1). Further,
at−1 = 〈at−1

i , at−1
j 〉 and ωt = 〈ωt

i , ω
t
j〉 are such

that θt = concat(θt−1,at−1,ωt). The base condition is
Pr(s0,θ0) = β0(s

0), the initial belief. The action likelihood
Pr(at−1|θt−1) =

∏
i Pr(at−1

i |θt−1
i), where the protagonist

(agent i) is assumed to execute his policy without deviation:

Pr(at−1
i |θt−1

i) =

{
1 if πi(φ(θ

t−1
i)) = at−1

i
0 otherwise.

Furthermore, based on the parametrization using δt that
we introduced in the previous section, we also have

Pr(at−1
j |θt−1

j) =

{
δt−1 if πj(φ(θ

t−1
j)) = at−1

j
1−δt−1

|Aj |−1 otherwise

From the joint probability in equation 1, we get

Pr(θt) =
∑
st

Pr(st,θt).

Next, we introduce the notion of consistent histories. Let
Θj be the set of all possible action-observation histories of
any length for agent j. Given the policy of agent j, πj , we
define the set of histories consistent at step t with πj , as a
subset Θπ,t

j ⊂ Θj such that any θj ∈ Θπ,t
j must satisfy one

of the two following conditions:
• |θj | < 2t, i.e., there are fewer than t steps of actions em-

bedded in θj , or

• |θj | ≥ 2t, but πj(φ(θ
t−1
j)) = at−1

j (where θt−1
j is the

2(t−1)-length prefix of θj) and the concatenation of θt−1
j

and at−1
j is also a prefix of θj . In other words, the action

embedded in θj following the prefix θt−1
j agrees with πj’s

prescribed action after observing φ(θt−1
j).

In words, histories that are consistent at step t with a pol-
icy, are either too short, or are long enough to suggest that
there was no deviation at step t from that policy. Now we
are ready to formulate a procedure for the refinement of δt,
using the EM (meta) algorithm.

Expectation Maximization

When Pr(at−1
i |θt−1

i) and Pr(at−1
j |θt−1

j) are substituted into
equation 1, we can rewrite Pr(θT) as

Pr(θT) = cθT
j

·
(∏

k∈N

δk

)
·
(∏

k∈D

1− δk
|A|j − 1

)
(2)

2447

where N ⊆ {0, . . . , T − 1} is the set of steps where θTj
follows the policy πj (i.e., θTj ∈ Θπ,k

j , ∀k ∈ N), and D

is the set of steps where θTj deviates from πj (i.e., θTj �∈
Θπ,k

j , ∀k ∈ D). Note |N | + |D| = T . The coefficient cθT
j

is the collection over other terms from equation 1, and is
a function of θTj for a given θTi , but is independent of the
parameters δk.

When agent i observes θTi , the hidden data is θTj , and the
(initial) parameter vector is δ0 = 〈δ00 , . . . , δ0T−1〉. We now
define the two key steps of the EM algorithm as follows:
Expectation/Estimation step: In this step, the standard

procedure is to calculate

E[lnPr(θT |δh+1)|δh, θTi].
The above expectation is taken relative to the distribution
over the hidden data θTj induced by the h-th parameter
hypothesis δh, while Pr(θT) is expressed in terms of the
next hypothesis δh+1. By equation 2, the above expres-
sion reduces to

E[ln cθT
j
]+

∑
k∈N,θT

j ∈Θπ,k
j

ln(δh+1
k)Pr(θTj |θTi , δh)+

∑
k∈D,θT

j �∈Θπ,k
j

ln

(
1− δh+1

k

|Aj | − 1

)
Pr(θTj |θTi , δh)

Maximization step: In this step we maximize the above
expectation with respect to δh+1, which yields

δh+1
k =

∑
θT
j ∈Θπ,k

j

Pr(θTj |θTi , δh), for k ∈ [0, T −1]. (4)

Repetition of the above two steps is guaranteed to converge
to the local maximum likelihood hypothesis δ∞(θTi) =
〈δ∞0 (θTi), . . . , δ

∞
T−1(θ

T
i)〉, for any given θTi . In other words,

given an observation θTi , the EM procedure gives the opti-
mized (for θTi) likelihood that agent j has deviated in any of
the steps k = 0, . . . , T − 1, by calculating 1− δ∞k (θTi).

The above procedure utilizes Pr(θT), and ultimately
equation 1. Unfortunately, this has a complexity of
O(|Aj |T |Ωj |T |S|T+1) for each iteration of EM, since ev-
ery possible history of agent j—whether consistent with πj ,
or deviated from πj—must be taken into account. In the
next section, we develop an alternative approach to calcu-
late equation 4 more tractably.

Controller Based EM

We have shown in the last section that grounding equation 1
on histories led to a complexity of δ update that is expo-
nential in the size of a history. In this section, we attempt
to ground equation 1 on the controller rather than histories.
It is not immediately clear whether the resulting procedure
for δ might be exponential in the size of the controller. We
shall answer this question in the negative, and show that this
change allows us to compute equation 4 in time polynomial
in the size of the controller.

Let Q�
i be the set of nodes in agent i’s layered FSM con-

troller at level � = 0, . . . , L − 1, and λ : Oi → Qi be a
function that maps its observation history to a node in Qi.
This node is unique because the controller only allows de-
terministic transitions. We represent the action that agent i
must execute when it reaches node qi ∈ Qi as a(qi).

Under the assumption that agent i has observed θTi , we de-
fine ρ(k, s, q�) as the probability that the agents reach joint
node q� = 〈q�i , q�j〉 at level � in their controllers and state s,
without agent j deviating at level k, where � = 0, . . . , T .
Note that � may be ≥ k or < k. We compute ρ recur-
sively as shown in equation 3, where q� = 〈q�i , q�j〉 with
q�i = λ(φ(θ�i)), and likewise for q�j . Similarly, ω�+1 =

〈ω�+1
i , ω�+1

j 〉, where the sum over ω�+1
j in equation 3 is

taken over all observations in Ω�+1
j ⊆ Ωj that enable transi-

tion from q�j to q�+1
j . Furthermore, a� = 〈a(q�i), a(q�j)〉, but

α� = 〈a(q�i), αj〉 where αj �= a(q�j).
The function ρ is related to equation 1 in a simple manner

as given in the following Lemma (proof omitted for space
limitation).

Lemma 1 For any θt = 〈θti , θtj〉 such that θtj ∈ Θπ,k
j :

Pr(st,θt) = ρ(k, st, qt)

where qt = 〈qti , qtj〉 such that qti = λ(φ(θti)), qtj =

λ(φ(θtj)).
Based on Lemma 1, it is fairly straightforward to show the

main result of this section, given as the following Theorem.

Theorem 1 After observing θTi , agent i can compute δh+1
k

as

δh+1
k =

∑
qTj ,s ρ

h(k, s, qT)∑
qTj ,s ρ

h(T, s, qT)

for k = 0, . . . , T − 1.

Proof (sketch): Using Lemma 1,
∑

qTj ,s ρ
h(k, s, qT) =∑

λ(φ(θT
j))|θT

j ∈Θπ,k
j

Pr(θT), which simplifies to∑
θT
j ∈Θπ,k

j
Pr(θT). Also note that the last (joint) ac-

tion in θT is aT−1, so that aT is beyond the horizon.
Therefore, ρh(T, s, qT) does not impose non-deviation at
any of the steps k = 0, . . . , T − 1, and thus equates to∑

θT
j ∈Θj

Pr(θT). Hence the right hand side in the above

theorem is indeed
∑

θT
j ∈Θπ,k

j
Pr(θTj |θTi , δh).

We call the procedure where Theorem 1 is used for
each EM iteration, CBEM (Controller Based EM). Theo-
rem 1 provides an alternative to equation 4, and is now
O(N2T 2|S|2|Aj ||Ωj |), where N is the number of nodes
per layer of agent j’s controller. Thus this approach has a
complexity polynomial in the size of the controller (which
is O(NL|Ωj |)), and is much more scalable than equation 4.
However, it is important to note |Aj | itself can be exponen-
tial in n (number of agents) when j is a virtual agent repre-
senting the product space of all agents other than i. Scalabil-
ity in terms of n usually requires that the transition (P) and
observation (O) distributions be factored using some prior

2448

ρh(k, s′, q�+1) =

{ ∑
s,q�j ,ω

�+1
j

ρh(k, s, q�)
[
P (ω�+1, s′|s,a�)δh� +

∑
α� P (ω�+1, s′|s,α�)

1−δh�
|Aj |−1

]
if k �= �∑

s,q�j ,ω
�+1
j

ρh(k, s, q�)P (ω�+1, s′|s,a�)δh� otherwise
(3)

knowledge about the dependence relations among agents,
which we do not pursue in this paper.

Evaluation

We evaluate CBEM in two domains: multi-agent tiger (Nair
et al. 2003), and drone search—a new domain that we in-
troduce here. First, we use the small domain of multi-agent
tiger to verify the speed gain of CBEM over EM. Then we
describe and use the more complex domain of drone search
to analyze the output of CBEM in two handcrafted scenar-
ios, and demonstrate its effectiveness.

Multi-agent Tiger

In multi-agent tiger there are two agents, each deciding
whether to open one of two doors, one of which hides a tiger
while the other conceals treasure. An agent can listen for the
tiger’s growl instead of opening a door, and this gives it a
noisy clue about the tiger’s location. In this domain, |S| = 2,
|Ωi/j | = 2, |Ai/j | = 3. More details of the planning domain
parameters can be found in (Nair et al. 2003). We ran both
EM and CBEM using known optimal policies for this do-
main, for horizons T = 3, . . . , 7. For the choice of θTi , we
used every possible θTi . The runtimes of EM and CBEM (in
secs), averaged over the choices of θTi (i.e., per history of
agent i), are reported in Figure 4 (left). This verifies the rela-
tive scalability of CBEM, as claimed in the previous section.

�

�

�

��

��

��

���

� �	

�
�

��

Figure 2: The Drone Search domain. Black numbers repre-
sent the successive locations of Drone 1, and red letters that
of Drone 2.

Drone Search

We introduce the main evaluation domain of this paper,
Drone Search, situated in a 4 × 4 grid, shown in Figure 2.
Two agents/drones take off from a base at the lower right
corner (1A) and follow different path plans (shown in black
numbers for Drone 1 and red letters for Drone 2) to end in a
refueling station at the upper left corner. Along their paths,

��

�����

�� ��� ���� �	

�� ��� ���� ��

��
	

��
��
	�
��
�
���

��

�
�
��
��
��
��

��
���

��

ct �

ct �

ct �

�

� ct �

ct ��

�������� ��������

Figure 3: A part of the layered controller used for Drone 1.
Here “Gx” represents the action “Go to x”. “Com” repre-
sents the action of communicating to the other drone that
the target has been found. Drone 2 has a similar controller.

the drones essentially perform a distributed search for a sin-
gle, stationary target, which can be located in any of the 15
cells (excluding the start cell). The search paths of the drones
cover exclusive territory for the most part, although their
search territories overlap at 1A, 6H, 7G, 9I, 8F and 11K.
Furthermore, they occupy the diagonal cells (1A, 7G, 9I and
11K) simultaneously. We assume that the drones cannot ob-
serve each other even when they co-occupy the same cell. If
a drone co-occupies the target cell then it is assumed that the
drone detects the target (observation t), and then it must send
a signal to the other drone (communication “Com”, which
can be perceived by the other drone at the next step as ob-
servation c) and stop. If a drone receives a communication
from the other drone, but has not itself seen the target, then
it infers the location of the other drone where it must have
seen the target, and proceeds toward that inferred location.
Thus, ideally, both drones end up in the location of the target,
for further joint surveillance. To keep it simple, we assume
that the planning domain functions O,P are deterministic.
Figure 3 shows a part of the manually designed layered con-
troller used for Drone 1. This domain has |S| = 256 joint
drone locations. Each drone can move in one of the 4 car-
dinal directions, or send a communication, or stop, for a to-
tal of |Ai/j | = 6 actions. The number of observations is
|Ωi/j | = 4, corresponding to the combinations t̄ ∧ c̄, t̄ ∧ c,
t ∧ c̄, and t ∧ c. Furthermore, T = 10, which amounts to
(256 · 6 · 4)10 operations for raw EM. This is well beyond
the capability of any personal computer existing today.

We create the two following scenarios for the evaluation
of CBEM in this domain. For each scenario, we use initial

2449

� � � � �

�

�

�

�

	

�

�

�

�

��� �

�

�
�
�
��
�
�
��
�
�
�
�
��
��
�
�
��
��
�
��

�
�

!

� � � � � � � 	
 � ��

�

���

���

���

��

�

���

����� ����� �����

���������������

�
��
�
�
�
���
�
��
!�
"
�
#
��
��
�
�

� � � � � � � 	
 � ��

�

���

���

���

��

�

���

����� ����� �����

���������������

�
��
�
�
�
���
�
��
!�
"
�
#
��
��
�
�

Figure 4: Left: Per history (θTi) runtime of CBEM and EM on Multi-agent Tiger for horizons T = 3, . . . , 7. Middle: (1 − δhk)
plots for k = 3, 4, 5 and iterations h = 0, . . . , 10, in Drone Search Scenario 1. Right: (1−δhk) plots for k = 0, 1, 2 and iterations
h = 0, . . . , 10, in Drone Search Scenario 2.

δ0k = 0.9, k = 0, . . . , 9.

Scenario 1 (Communication failure) : In this scenario,
we place the target in cell 8F. Although it is in overlapping
search territory, Drone 2 should reach the target earlier
(level 4 of its controller) than Drone 1. Suppose Drone 2
fails to communicate (at level 5 of its controller) to Drone
1 that it has seen the target at 8F, so Drone 1 does not
receive a c observation. Eventually when it reaches 8F, it
finds the target there, sends a “Com” signal, and stops.
Thus Drone 1’s observation sequence is t̄ ∧ c̄ until af-
ter level 6. Figure 4 (middle) shows the plots of Drone
1’s inference of (1 − δhk) values for levels k = 3, 4, 5
against h (CBEM iterations). To reduce clutter, this plot
does not show levels k = 0, 1, 2, 6−9, which have a simi-
lar pattern as level 4. The plot shows that Drone 1 does in-
deed believe that Drone 2 failed to execute “Com” at level
5. While alternative hypotheses about navigational devia-
tion at other levels have some weight temporarily at the
beginning, the probabilities of these hypotheses diminish
within 10 iterations.

Scenario 2 (Navigation failure) : In this scenario, we
place the target in cell 7G. We assume that Drone 2
encounters a navigational failure at level 1 and instead of
travelling from B to C, goes west to 7G. There it sees the
target, sends a “Com” to Drone 1 (at level 2), and stops.
Drone 1 receives the communication, at which point it is
located in cell 4. Drone 1 infers that Drone 2 must have
seen the target in cell C, and hence proceeds toward cell
C along the route 4 → 5 → 6H → 7G → B → C.
However, when it reaches cell 7G, it sees the target too,
earlier than expected. Figure 4 (right) shows the plots
of Drone 1’s inference of (1 − δhk) values for levels
k = 0, 1, 2. To reduce clutter, this plot does not show
levels k = 3 − 9, which have a similar pattern as level
2. It is evident that Drone 1 believes Drone 2 failed to
travel from cell B to C at level 1, rather than believing
that Drone 2 sent a false “Com” signal at level 2.

Note that in each of the above scenarios there are potential
alternative explanations. For instance, in Scenario 2 it is pos-
sible that Drone 2 sent a false “Com” signal at level 2. But
the hypothesis that it performed a “Com” action in a navi-

gation node of its controller has a lower probability (1−δ
|Aj |−1)

than doing a “Com” action in its “Com” node (δ), and this
difference is reinforced by the fact that Drone 1 indeed re-
ceived a c signal out of level 2. As a result, the hypothesis
that there was a navigation failure before level 2 is preferred
over the false “Com” hypothesis at level 2. Similarly in Sce-
nario 1, the hypothesis that Drone 2 simply failed to send
“Com” at level 5 is preferred over multiply fractured hy-
potheses of navigational failures at earlier levels. In general,
(CB)EM prefers simple explanations involving brief devi-
ations over more complex patterns of multiple step devia-
tions.

In Scenario 2, there is an equally valid alternative expla-
nation to navigation failure at level 2: rather than taking
the path 1A → B → 7G, Drone 2 might have taken path
1A → 2 → 7G, thus deviating at level 0 rather than at level
1. Figure 4 (right) shows that both of these hypotheses had
roughly equal probability (≈ 0.5) for the first two iterations
of CBEM. However, one hypothesis had a slightly higher
weight that acted as a perturbation to break symmetry, with
the dynamics eventually selecting one decisively.

The controllers that we designed for the Drones (one of
which is partly shown in Figure 3) do not meet Tennen-
holtz’s criteria for stable joint plans (Tennenholtz 1997), al-
though they come close. Some deviations of Drone 2 are,
in fact, completely undetectable to Drone 1. For instance, if
the target was at 8F, and Drone 2 stayed at C for two steps
before moving west to 8F directly, thus skipping cells D and
E, then Drone 1’s observations would be no different than if
Drone 2 had followed its path plan.

Conclusions and Future Work

We have developed an algorithm, and its tractable imple-
mentation, for the detection of plan deviation by teammates
in a multi-agent system. Evaluation of our approach demon-
strates a preference for simpler deviation hypotheses. One
question that could spur future research is how to construct
the priors, δ0, or is it possible to perform this inference in
a prior-free way? Some limitations of the approach include
the inability to infer which other agent deviated, or what ac-
tion it executed instead of its policy-action, and the assump-

2450

tion that T < L. In fact, most finite state controllers are
designed for infinite horizon plan execution, therefore this
last assumption deserves work in the immediate future.

Acknowledgments

We thank the anonymous reviewers for helpful comments
and suggestions. This work was supported in part by an
AFOSR Summer Faculty Fellowship awarded to Bikramjit
Banerjee in 2014.

References

de Jonge, F.; Roos, N.; and Witteveen, C. 2009. Primary and
secondary diagnosis of multiagent plan execution. Journal
of Autonomous Agent and Multiagent Systems 18(2):267–
294.
Kalech, M., and Kaminka, G. 2003. On the design of social
diagnosis algorithms for multi-agent teams. In Proc. Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
03), 370–375.
Kalech, M., and Kaminka, G. 2005. Diagnosing a team of
agents: Scaling up. In Proc. of International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-05),
249–255.
Micalizio, R., and Torasso, P. 2008. Monitoring the execu-
tion of a multi-agent plan: Dealing with partial observabil-
ity. In Proceedings of the 2008 Conference on ECAI 2008:
18th European Conference on Artificial Intelligence, 408–
412. Amsterdam, The Netherlands, The Netherlands: IOS
Press.
Micalizio, R., and Torasso, P. 2009. Agent cooperation for
monitoring and diagnosing a map. In Proc. of Multiagent
System Technologies (MATES’ 09), volume LNCS: 5774,
66–78.
Micalizio, R., and Torasso, P. 2014. Cooperative monitoring
to diagnose multiagent plans. Journal of Artificial Intelli-
gence Research 51:1–70.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-03), 705–711.
Pajarinen, J., and Peltonen, J. 2011. Periodic Finite State
Controllers for Efficient POMDP and DEC-POMDP Plan-
ning. In Proceedings of the 25th Annual Conference on Neu-
ral Information Processing Systems (NIPS), 2636–2644.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. In Proceed-
ings of the IEEE, 257–286.
Seuken, S., and Zilberstein, S. 2007. Memory-bounded dy-
namic programming for Dec-POMDPs. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI-07), 2009–2015.
Tennenholtz, M. 1997. On stable multi-agent behavior in
face of uncertainty. In Proc. UAI, 445–452.

Viterbi, A. 1967. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm. IEEE
Transactions on Information Theory 13(2):260–269.

2451

